{ "id": "2109.06582", "version": "v1", "published": "2021-09-14T11:07:46.000Z", "updated": "2021-09-14T11:07:46.000Z", "title": "Cut-and-join operators for higher Weil-Petersson volumes", "authors": [ "Alexander Alexandrov" ], "comment": "12 pages", "categories": [ "math.AG", "hep-th", "math-ph", "math.MP", "nlin.SI" ], "abstract": "In this paper, we construct the cut-and-join operator description for the generating functions of all intersection numbers of $\\psi$, $\\kappa$, and $\\Theta$ classes on the moduli spaces $\\overline{\\mathcal M}_{g,n}$. The cut-and-join operators define an algebraic version of topological recursion. This recursion allows us to compute all these intersection numbers recursively. For the specific values of parameters, the generating functions describe the volumes of moduli spaces of (super) hyperbolic Riemann surfaces with geodesic boundaries, which are also related to the JT (super)gravity.", "revisions": [ { "version": "v1", "updated": "2021-09-14T11:07:46.000Z" } ], "analyses": { "subjects": [ "37K10", "14N35", "81R10", "05A15" ], "keywords": [ "higher weil-petersson volumes", "moduli spaces", "intersection numbers", "cut-and-join operators define", "hyperbolic riemann surfaces" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }