{ "id": "2109.06110", "version": "v1", "published": "2021-09-13T16:35:07.000Z", "updated": "2021-09-13T16:35:07.000Z", "title": "Disproof of a conjecture of Erdős and Simonovits on the Turán number of graphs with minimum degree 3", "authors": [ "Oliver Janzer" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "In 1981, Erd\\H{o}s and Simonovits conjectured that for any bipartite graph $H$ we have $\\mathrm{ex}(n,H)=O(n^{3/2})$ if and only if $H$ is $2$-degenerate. Later, Erd\\H{o}s offered 250 dollars for a proof and 100 dollars for a counterexample. In this paper, we disprove the conjecture by finding, for any $\\varepsilon>0$, a $3$-regular bipartite graph $H$ with $\\mathrm{ex}(n,H)=O(n^{4/3+\\varepsilon})$.", "revisions": [ { "version": "v1", "updated": "2021-09-13T16:35:07.000Z" } ], "analyses": { "keywords": [ "turán number", "minimum degree", "simonovits", "conjecture", "regular bipartite graph" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }