{ "id": "2109.03534", "version": "v1", "published": "2021-09-08T10:34:06.000Z", "updated": "2021-09-08T10:34:06.000Z", "title": "Partial sums of the Gibonacci sequence", "authors": [ "Pankaj Jyoti Mahanta" ], "comment": "6 pages, 1 figure", "categories": [ "math.CO", "math.NT" ], "abstract": "Recently, Chu studied some properties of the partial sums of the sequence $P^k(F_n)$, where $P(F_n)=\\big(\\sum_{i=1}^nF_i\\big)_{n\\geq1}$ and $(F_n)_{n\\geq1}$ is the Fibonacci sequence, and gave its combinatorial interpretation. We generalize those results, introduce colored Schreier sets, and give another equivalent combinatorial interpretation by means of lattice path.", "revisions": [ { "version": "v1", "updated": "2021-09-08T10:34:06.000Z" } ], "analyses": { "subjects": [ "11B39", "05A19" ], "keywords": [ "partial sums", "gibonacci sequence", "equivalent combinatorial interpretation", "fibonacci sequence", "lattice path" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }