{ "id": "2109.03491", "version": "v1", "published": "2021-09-08T08:29:32.000Z", "updated": "2021-09-08T08:29:32.000Z", "title": "Sesqui-regular graphs with smallest eigenvalue at least $-3$", "authors": [ "Qianqian Yang", "Brhane Gebremichel", "Masood Ur Rehman", "Jae Young Yang", "Jack H. Koolen" ], "categories": [ "math.CO" ], "abstract": "Koolen et al. showed that if a graph with smallest eigenvalue at least $-3$ has large minimal valency, then it is $2$-integrable. In this paper, we will focus on the sesqui-regular graphs with smallest eigenvalue at least $-3$ and study their integrability.", "revisions": [ { "version": "v1", "updated": "2021-09-08T08:29:32.000Z" } ], "analyses": { "subjects": [ "05C50", "05C62", "05C75", "11H99" ], "keywords": [ "smallest eigenvalue", "sesqui-regular graphs", "large minimal valency", "integrability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }