{ "id": "2109.03227", "version": "v1", "published": "2021-09-07T17:55:13.000Z", "updated": "2021-09-07T17:55:13.000Z", "title": "The completely delocalized region of the Erdős-Rényi graph", "authors": [ "Johannes Alt", "Raphael Ducatez", "Antti Knowles" ], "comment": "10 pages, 1 figure", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We analyse the eigenvectors of the adjacency matrix of the Erd\\H{o}s-R\\'enyi graph on $N$ vertices with edge probability $\\frac{d}{N}$. We determine the full region of delocalization by determining the critical values of $\\frac{d}{\\log N}$ down to which delocalization persists: for $\\frac{d}{\\log N} > \\frac{1}{\\log 4 - 1}$ all eigenvectors are completely delocalized, and for $\\frac{d}{\\log N} > 1$ all eigenvectors with eigenvalues away from the spectral edges are completely delocalized. Below these critical values, it is known [arXiv:2005.14180, arXiv:2106.12519] that localized eigenvectors exist in the corresponding spectral regions.", "revisions": [ { "version": "v1", "updated": "2021-09-07T17:55:13.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52", "05C80" ], "keywords": [ "erdős-rényi graph", "delocalized region", "eigenvectors", "critical values", "spectral edges" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }