{ "id": "2109.02829", "version": "v1", "published": "2021-09-07T02:49:44.000Z", "updated": "2021-09-07T02:49:44.000Z", "title": "The principal eigenfunction of the Dirichlet Laplacian with prescribed numbers of critical points on the upper half of a topological torus", "authors": [ "Putri Zahra Kamalia", "Shigeru Sakaguchi" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "We consider the principal eigenvalue problem for the Laplace-Beltrami operator on the upper half of a topological torus under the Dirichlet boundary condition. We present a construction of the upper half of a topological torus that admits the principal eigenfunction having exact numbers of critical points. Furthermore, we manage to identify the locations of all the critical points of the principal eigenfunction explicitly.", "revisions": [ { "version": "v1", "updated": "2021-09-07T02:49:44.000Z" } ], "analyses": { "subjects": [ "35J25", "35J05", "47A75", "58J37" ], "keywords": [ "principal eigenfunction", "upper half", "topological torus", "critical points", "dirichlet laplacian" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }