{ "id": "2109.01464", "version": "v1", "published": "2021-09-03T11:53:36.000Z", "updated": "2021-09-03T11:53:36.000Z", "title": "Limiting Spectral Distributions of Families of Block Matrix Ensembles", "authors": [ "Teresa Dunn", "Henry L. Fleischmann", "Faye Jackson", "Simran Khunger", "Steven J. Miller", "Luke Reifenberg", "Alexander Shashkov", "Stephen Willis" ], "comment": "19 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "We introduce a new matrix operation on a pair of matrices, $\\text{swirl}(A,X),$ and discuss its implications on the limiting spectral distribution. In a special case, the resultant ensemble converges almost surely to the Rayleigh distribution. In proving this, we provide a novel combinatorial proof that the random matrix ensemble of circulant Hankel matrices converges almost surely to the Rayleigh distribution, using the method of moments.", "revisions": [ { "version": "v1", "updated": "2021-09-03T11:53:36.000Z" } ], "analyses": { "subjects": [ "60B20", "60B10" ], "keywords": [ "limiting spectral distribution", "block matrix ensembles", "circulant hankel matrices converges", "rayleigh distribution", "novel combinatorial proof" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }