{ "id": "2109.01043", "version": "v1", "published": "2021-09-02T16:01:29.000Z", "updated": "2021-09-02T16:01:29.000Z", "title": "Sparsity of Integral Points on Moduli Spaces of Varieties", "authors": [ "Jordan S. Ellenberg", "Brian Lawrence", "Akshay Venkatesh" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "Let $X$ be a quasi-projective variety over a number field, admitting (after passage to $\\mathbb{C}$) a geometric variation of Hodge structure whose period mapping has zero-dimensional fibers. Then the integral points of $X$ are sparse: the number of such points of height $\\leq B$ grows slower than any positive power of $B$. For example, homogeneous integral polynomials in a fixed number of variables and degree, with discriminant divisible only by a fixed set of primes, are sparse when considered up to integral linear substitutions.", "revisions": [ { "version": "v1", "updated": "2021-09-02T16:01:29.000Z" } ], "analyses": { "keywords": [ "integral points", "moduli spaces", "integral linear substitutions", "number field", "geometric variation" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }