{ "id": "2108.13829", "version": "v1", "published": "2021-08-31T13:36:30.000Z", "updated": "2021-08-31T13:36:30.000Z", "title": "Partial regularity result for non-autonomous elliptic systems with general growth", "authors": [ "Teresa Isernia", "Chiara Leone", "Anna Verde" ], "journal": "Commun. Pure Appl. Anal. (2021)", "categories": [ "math.AP" ], "abstract": "In this paper we prove a H\\\"older partial regularity result for weak solutions $u:\\Omega\\to \\mathbb{R}^N$, $N\\geq 2$, to non-autonomous elliptic systems with general growth of the type: \\begin{equation*} -\\rm{div}\\, a(x, u, Du)= b(x, u, Du) \\quad \\mbox{ in } \\Omega. \\end{equation*} The crucial point is that the operator $a$ satisfies very weak regularity properties and a general growth, while the inhomogeneity $b$ has a controllable growth.", "revisions": [ { "version": "v1", "updated": "2021-08-31T13:36:30.000Z" } ], "analyses": { "keywords": [ "partial regularity result", "non-autonomous elliptic systems", "general growth", "weak regularity properties", "weak solutions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }