{ "id": "2108.13279", "version": "v1", "published": "2021-08-30T14:47:42.000Z", "updated": "2021-08-30T14:47:42.000Z", "title": "Local well-posedness for the Maxwell-Chern-Simons-Higgs system in Fourier-Lebesgue spaces", "authors": [ "Hartmut Pecher" ], "comment": "13 pages. arXiv admin note: substantial text overlap with arXiv:2010.06170, arXiv:2012.14239, arXiv:1411.1207", "categories": [ "math.AP" ], "abstract": "We consider local well-posedness for the Maxwell-Chern-Simons-Higgs system in Lorenz gauge for data with minimal regularity assumptions in Fourier-Lebesgue spaces $\\widehat{H}^{s,r}$ , where $\\|u\\|_{\\widehat{H}^{s,r}} := \\| \\langle \\xi \\rangle^s \\widehat{u}(\\xi)\\|_{L^{r'}}$ , and $r$ and $r'$ are dual exponents. We show that the gap between this regularity and the regularity with respect to scaling shrinks in the case $r>1$ , $r \\to 1$ compared to the classical case $r=2$ .", "revisions": [ { "version": "v1", "updated": "2021-08-30T14:47:42.000Z" } ], "analyses": { "subjects": [ "35Q40", "35L70" ], "keywords": [ "maxwell-chern-simons-higgs system", "fourier-lebesgue spaces", "local well-posedness", "minimal regularity assumptions", "dual exponents" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }