{ "id": "2108.12685", "version": "v1", "published": "2021-08-28T18:06:53.000Z", "updated": "2021-08-28T18:06:53.000Z", "title": "The Krein-von Neumann Extension of a Regular Even Order Quasi-Differential Operator", "authors": [ "Minsung Cho", "Seth Hoisington", "Roger Nichols", "Brian Udall" ], "categories": [ "math.FA" ], "abstract": "We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to M\\\"oller and Zettl.", "revisions": [ { "version": "v1", "updated": "2021-08-28T18:06:53.000Z" } ], "analyses": { "subjects": [ "47B25", "47E05", "34B24", "34L40" ], "keywords": [ "krein-von neumann extension", "order quasi-differential operator", "positive minimal operator corresponding", "order quasi-differential expression", "boundary conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }