{ "id": "2108.12349", "version": "v1", "published": "2021-08-27T15:24:47.000Z", "updated": "2021-08-27T15:24:47.000Z", "title": "Local-global principles for constant reductive groups over semi-global fields", "authors": [ "Jean-Louis Colliot-Thélène", "David Harbater", "Julia Hartmann", "Daniel Krashen", "R. Parimala", "V. Suresh" ], "comment": "58 pages", "categories": [ "math.AG" ], "abstract": "We study local-global principles for torsors under reductive linear algebraic groups over semi-global fields; i.e., over one variable function fields over complete discretely valued fields. We provide conditions on the group and the semiglobal field under which the local-global principle holds, and we compute the obstruction to the local-global principle in certain classes of examples. Using our description of the obstruction, we give the first example of a semisimple simply connected group over a semi-global field where the local-global principle fails. Our methods include patching and R-equivalence.", "revisions": [ { "version": "v1", "updated": "2021-08-27T15:24:47.000Z" } ], "analyses": { "subjects": [ "11E72", "12G05", "14G05", "14H25", "20G15", "14G27" ], "keywords": [ "semi-global field", "constant reductive groups", "reductive linear algebraic groups", "local-global principle holds", "study local-global principles" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable" } } }