{ "id": "2108.12180", "version": "v1", "published": "2021-08-27T08:50:09.000Z", "updated": "2021-08-27T08:50:09.000Z", "title": "On application of slowly varying functions with remainder in the theory of Markov branching processes with mean one and infinite variance", "authors": [ "A. Imomov", "A. Meyliyev" ], "journal": "Ukrain. Math. J, Vol. 73, no. 8, 2021, pp.1056-1066", "doi": "10.37863/umzh.v73i8.684", "categories": [ "math.PR" ], "abstract": "We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Markov branching process. We treat the critical case so that the infinitesimal generating function of the process has the infinite second moment, but it regularly varies with the remainder. We improve the Basic Lemma of the theory of critical Markov branching process and refine known limit results.", "revisions": [ { "version": "v1", "updated": "2021-08-27T08:50:09.000Z" } ], "analyses": { "subjects": [ "60J80" ], "keywords": [ "slowly varying functions", "infinite variance", "application", "infinite second moment", "infinitesimal generating function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }