{ "id": "2108.11840", "version": "v1", "published": "2021-08-26T15:10:03.000Z", "updated": "2021-08-26T15:10:03.000Z", "title": "Sobolev estimates for fractional parabolic equations with space-time non-local operators", "authors": [ "Hongjie Dong", "Yanze Liu" ], "categories": [ "math.AP" ], "abstract": "We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ \\partial_t^\\alpha u - Lu= f \\quad \\mathrm{in} \\quad (0,T) \\times \\mathbb{R}^d,$$ where $\\partial_t^\\alpha u$ is the Caputo fractional derivative of order $\\alpha \\in (0,1]$, $T\\in (0,\\infty)$, and $$Lu(t,x) := \\int_{ \\mathbb{R}^d} \\bigg( u(t,x+y)-u(t,x) - y\\cdot \\nabla_xu(t,x)\\chi^{(\\sigma)}(y)\\bigg)K(t,x,y)\\,dy $$ is an integro-differential operator in the spatial variables. Here we do not impose any regularity assumption on the kernel $K$ with respect to $t$ and $y$. We also derive a weighted mixed-norm estimate for the equations with operators that are local in time, i.e., $\\alpha = 1$, which extend the previous results by using a quite different method.", "revisions": [ { "version": "v1", "updated": "2021-08-26T15:10:03.000Z" } ], "analyses": { "keywords": [ "fractional parabolic equations", "space-time non-local operators", "sobolev estimates", "integro-differential operator", "caputo fractional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }