{ "id": "2108.11796", "version": "v1", "published": "2021-08-26T13:55:39.000Z", "updated": "2021-08-26T13:55:39.000Z", "title": "Boundary partial regularity for minimizers of discontinuous quasiconvex integrals with general growth", "authors": [ "Jihoon Ok", "Giovanni Scilla", "Bianca Stroffolini" ], "categories": [ "math.AP" ], "abstract": "We prove the partial H\\\"older continuity on boundary points for minimizers of quasiconvex non-degenerate functionals \\begin{equation*} \\F({\\bf u}) \\colon =\\int_{\\Omega} f(x,{\\bf u},D{\\bf u})\\,\\dd x, \\end{equation*} where $f$ satisfies a uniform VMO condition with respect to the $x$-variable, is continuous with respect to ${\\bf u}$ and has a general growth with respect to the gradient variable.", "revisions": [ { "version": "v1", "updated": "2021-08-26T13:55:39.000Z" } ], "analyses": { "subjects": [ "35J47", "46E35", "49N60" ], "keywords": [ "boundary partial regularity", "discontinuous quasiconvex integrals", "general growth", "minimizers", "uniform vmo condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }