{ "id": "2108.10878", "version": "v1", "published": "2021-08-24T17:59:01.000Z", "updated": "2021-08-24T17:59:01.000Z", "title": "Refinements to the prime number theorem for arithmetic progressions", "authors": [ "Jesse Thorner", "Asif Zaman" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We prove a version of the prime number theorem for arithmetic progressions that is uniform enough to deduce the Siegel-Walfisz theorem, Hoheisel's asymptotic for intervals of length $x^{1-\\delta}$, a Brun-Titchmarsh bound, and Linnik's bound on the least prime in an arithmetic progression as corollaries. Our proof uses the Vinogradov-Korobov zero-free region and a refinement of Bombieri's \"repulsive\" log-free zero density estimate. Improvements exist when the modulus is sufficiently powerful.", "revisions": [ { "version": "v1", "updated": "2021-08-24T17:59:01.000Z" } ], "analyses": { "subjects": [ "11N05", "11N13", "11M06" ], "keywords": [ "prime number theorem", "arithmetic progression", "refinement", "log-free zero density estimate", "vinogradov-korobov zero-free region" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }