{ "id": "2108.10624", "version": "v1", "published": "2021-08-24T10:20:31.000Z", "updated": "2021-08-24T10:20:31.000Z", "title": "Trinomial coefficients and a determinant of Sun", "authors": [ "Hai-Liang Wu", "Yue-Feng She", "He-Xia Ni" ], "categories": [ "math.NT" ], "abstract": "In this paper, by using the tool of trinomial coefficients we study some determinant problems posed by Zhi-Wei Sun. For example, given any odd prime $p$ with $p\\equiv 2\\pmod 3$, we show that $2\\det[\\frac{1}{i^2-ij+j^2}]_{1\\le i,j\\le p-1}$ is a quadratic residue modulo $p$. This confirms a conjecture of Zhi-Wei Sun.", "revisions": [ { "version": "v1", "updated": "2021-08-24T10:20:31.000Z" } ], "analyses": { "keywords": [ "trinomial coefficients", "zhi-wei sun", "quadratic residue modulo", "determinant problems", "odd prime" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }