{ "id": "2108.10247", "version": "v1", "published": "2021-08-23T15:38:52.000Z", "updated": "2021-08-23T15:38:52.000Z", "title": "Mean values of multivariable multiplicative functions and applications to the average number of cyclic subgroups and multivariable averages associated with the LCM function", "authors": [ "D. Essouabri", "C. Salinas Zavala", "L. Tóth" ], "comment": "36 pages, to appear in Journal of Number Theory", "categories": [ "math.NT" ], "abstract": "We use multiple zeta functions to prove, under suitable assumptions, precise asymptotic formulas for the averages of multivariable multiplicative functions. As applications, we prove some conjectures on the average number of cyclic subgroups of the group ${\\mathbb Z}_{m_1}\\times\\dots\\times {\\mathbb Z}_{m_n}$ and multivariable averages associated with the LCM function.", "revisions": [ { "version": "v1", "updated": "2021-08-23T15:38:52.000Z" } ], "analyses": { "subjects": [ "11N37", "11M32", "11M45", "11M41" ], "keywords": [ "multivariable multiplicative functions", "average number", "cyclic subgroups", "lcm function", "multivariable averages" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }