{ "id": "2108.10238", "version": "v1", "published": "2021-08-23T15:21:58.000Z", "updated": "2021-08-23T15:21:58.000Z", "title": "On the $q$-analogue of the pair correlation conjecture via Fourier optimization", "authors": [ "Oscar E. Quesada-Herrera" ], "comment": "17 pages, 3 figures", "categories": [ "math.NT", "math.CA" ], "abstract": "We study the $q$-analogue of the average of Montgomery's function $F(\\alpha, T)$ over bounded intervals. Assuming the Generalized Riemann Hypothesis for Dirichlet $L$-functions, we obtain upper and lower bounds for this average over an interval that are quite close to the pointwise conjectured value of 1. To compute our bounds, we extend a Fourier analysis approach by Carneiro, Chandee, Chirre, and Milinovich, and apply computational methods of non-smooth programming.", "revisions": [ { "version": "v1", "updated": "2021-08-23T15:21:58.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "41A30" ], "keywords": [ "pair correlation conjecture", "fourier optimization", "fourier analysis approach", "generalized riemann hypothesis", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }