{ "id": "2108.09949", "version": "v1", "published": "2021-08-23T05:45:10.000Z", "updated": "2021-08-23T05:45:10.000Z", "title": "One numerical obstruction for rational maps between hypersurfaces", "authors": [ "Ilya Karzhemanov" ], "comment": "11 pages", "categories": [ "math.AG" ], "abstract": "Given a rational dominant map $\\phi: Y \\dashrightarrow X$ between two generic hypersurfaces $Y,X \\subset \\mathbb{P}^n$ of dimension $\\ge 3$, we prove (under an addition assumption on $\\phi$) a ``Noether--Fano type'' inequality $m_Y \\ge m_X$ for certain (effectively computed) numerical invariants of $Y$ and $X$.", "revisions": [ { "version": "v1", "updated": "2021-08-23T05:45:10.000Z" } ], "analyses": { "keywords": [ "rational maps", "numerical obstruction", "rational dominant map", "generic hypersurfaces", "addition assumption" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }