{ "id": "2108.09225", "version": "v1", "published": "2021-08-20T15:30:04.000Z", "updated": "2021-08-20T15:30:04.000Z", "title": "Extremes of Gaussian random fields with non-additive dependence structure", "authors": [ "Long Bai", "Krzysztof Debicki", "Peng Liu" ], "comment": "34 pages", "categories": [ "math.PR" ], "abstract": "We derive exact asymptotics of $$\\mathbb{P}\\left(\\sup_{t\\in \\mathcal{A}}X(t)>u\\right), ~\\text{as}~ u\\to\\infty,$$ for a centered Gaussian field $X(t),~t\\in \\mathcal{A}\\subset\\mathbb{R}^n$, $n>1$ with continuous sample paths a.s. and general dependence structure, for which $\\arg \\max_{t\\in {\\mathcal{A}}} Var(X(t))$ is a Jordan set with finite and positive Lebesque measure of dimension $k\\leq n$. Our findings are applied to deriving the asymptotics of tail probabilities related to performance tables and dependent chi processes.", "revisions": [ { "version": "v1", "updated": "2021-08-20T15:30:04.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70" ], "keywords": [ "gaussian random fields", "non-additive dependence structure", "general dependence structure", "dependent chi processes", "centered gaussian field" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }