{ "id": "2108.08267", "version": "v1", "published": "2021-08-18T17:37:45.000Z", "updated": "2021-08-18T17:37:45.000Z", "title": "On the existence of moments of the exit time from the positive halfline for a random walk with negative drift", "authors": [ "Sergey Foss", "Timofej Prasolov" ], "comment": "7 pages", "categories": [ "math.PR" ], "abstract": "We consider the first exit time $\\tau = \\min \\{n\\ge 1 : S_n\\le 0\\}$ from the positive halfline of a random walk $S_n = \\sum_1^n \\xi_i, n\\ge 1$ with i.d.d. summands having a negative drift ${\\mathbb E} \\xi = -a< 0$. Let $\\xi^+ = \\max (0, \\xi_1)$. It is well-known that, for any $c>1$, the finiteness of ${\\mathbb E}(\\xi^+)^{c}$ implies the finiteness of ${\\mathbb E} \\tau^c$ and, for any $c>0$, the finiteness of ${\\mathbb E} \\exp({c\\xi^+})$ implies that of ${\\mathbb E} \\exp({c'\\tau})$ where $c'>0$ is, in general, another constant that depends on $c$ and on the distribution of $\\xi_1$. We consider the intermediate case, assuming that ${\\mathbb E} \\exp({g(\\xi^+)})<\\infty$ for a positive increasing function $g$ such that $\\liminf_{x\\to\\infty} g(x)/\\log x = \\infty$ and $\\limsup_{x\\to\\infty} g(x)/x =0$, and that ${\\mathbb E} \\exp({c\\xi^+})=\\infty$, for all $c>0$. Assuming a few further technical assumptions, we show that then ${\\mathbb E} \\exp({(1-\\varepsilon){g}((1-\\varepsilon)a\\tau)})<\\infty$, for any $\\varepsilon \\in (0,1)$.", "revisions": [ { "version": "v1", "updated": "2021-08-18T17:37:45.000Z" } ], "analyses": { "subjects": [ "60G50", "60G40", "60K25" ], "keywords": [ "random walk", "positive halfline", "negative drift", "finiteness", "first exit time" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }