{ "id": "2108.08232", "version": "v1", "published": "2021-08-18T16:49:25.000Z", "updated": "2021-08-18T16:49:25.000Z", "title": "Sums of random multiplicative functions over function fields with few irreducible factors", "authors": [ "Daksh Aggarwal", "Unique Subedi", "William Verreault", "Asif Zaman", "Chenghui Zheng" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.", "revisions": [ { "version": "v1", "updated": "2021-08-18T16:49:25.000Z" } ], "analyses": { "subjects": [ "11K65", "60F05", "60G50" ], "keywords": [ "random multiplicative functions", "function fields", "irreducible factors", "random rademacher multiplicative functions", "normal approximation" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }