{ "id": "2108.08093", "version": "v1", "published": "2021-08-18T11:29:10.000Z", "updated": "2021-08-18T11:29:10.000Z", "title": "Extreme points of the unit ball of Paley-Wiener space over two symmetric intervals", "authors": [ "Alexander Ulanovskii", "Ilya Zlotnikov" ], "comment": "23 pages", "categories": [ "math.FA", "math.CA", "math.CV" ], "abstract": "Let $PW_S^1$ be the space of integrable functions on $\\mathbb{R}$ whose Fourier transform vanishes outside $S$, where $S = [-\\sigma,-\\rho]\\cup[\\rho,\\sigma]$, $0<\\rho<\\sigma$. In the case $\\rho>\\sigma/2$, we present a complete description of the extreme points of the unit ball of $PW_S^1$. This description is no longer true if $\\rho<\\sigma/2$. For $\\rho>\\sigma/2$ we also show that every $f \\in PW^1_S, \\, \\|f\\|_1 =1,$ can be represented as $f = (f_1 + f_2)/2$ where $f_1$ and $f_2$ are extreme.", "revisions": [ { "version": "v1", "updated": "2021-08-18T11:29:10.000Z" } ], "analyses": { "subjects": [ "46A55", "30D20", "30D30" ], "keywords": [ "unit ball", "extreme points", "paley-wiener space", "symmetric intervals", "fourier transform vanishes outside" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }