{ "id": "2108.07796", "version": "v1", "published": "2021-08-15T23:56:12.000Z", "updated": "2021-08-15T23:56:12.000Z", "title": "A remark on ill-posedness", "authors": [ "Haibo Yang", "Qixiang Yang", "Huoxiong Wu" ], "comment": "9 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. In this paper, we construct a non-Gauss flow function to show that, for classic Navier-Stokes equations, wellposedness and norm inflation have no conflict.", "revisions": [ { "version": "v1", "updated": "2021-08-15T23:56:12.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "42B35", "46E30" ], "keywords": [ "ill-posedness", "norm inflation implies", "mild solution means", "non-gauss flow function", "classic navier-stokes equations" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }