{ "id": "2108.07680", "version": "v1", "published": "2021-08-17T15:28:34.000Z", "updated": "2021-08-17T15:28:34.000Z", "title": "Counterexamples to the Colorful Tverberg Conjecture for Hyperplanes", "authors": [ "João Pedro Carvalho", "Pablo Soberón" ], "comment": "5 pagse, 1 figure", "categories": [ "math.CO" ], "abstract": "In 2008 Karasev conjectured that for every set of $r$ blue lines, $r$ green lines, and $r$ red lines in the plane, there exists a partition of them into $r$ colorful triples whose induced triangles intersect. We disprove this conjecture for every $r$ and extend the counterexamples to higher dimensions.", "revisions": [ { "version": "v1", "updated": "2021-08-17T15:28:34.000Z" } ], "analyses": { "keywords": [ "colorful tverberg conjecture", "counterexamples", "hyperplanes", "green lines", "higher dimensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }