{ "id": "2108.07517", "version": "v1", "published": "2021-08-17T09:03:48.000Z", "updated": "2021-08-17T09:03:48.000Z", "title": "Zeros of quasi-orthogonal $q$-Laguerre polynomials", "authors": [ "Pinaki Prasad Kar", "Priyabrat Gochhayat" ], "comment": "12 pages", "categories": [ "math.CA" ], "abstract": "We investigate the interlacing of zeros of polynomials of different degrees within the sequences of $q$-Laguerre polynomials $\\left\\{\\tilde{L}_n^{(\\delta)}(z;q)\\right\\}_{n=0}^{\\infty}$ characterized by $\\delta\\in(-2,-1).$ The interlacing of zeros of quasi-orthogonal polynomials $\\tilde{L}_n^{(\\delta)}(z;q)$ with those of the orthogonal polynomials $\\tilde{L}_m^{(\\delta+t)}(z;q), m,n\\in\\mathbb{N}, t\\in\\{1,2\\}$ is also considered. New bounds for the least zero of the (order $1$) quasi-orthogonal $q$-Laguerre polynomials are derived.", "revisions": [ { "version": "v1", "updated": "2021-08-17T09:03:48.000Z" } ], "analyses": { "subjects": [ "33D15", "33D45" ], "keywords": [ "laguerre polynomials", "quasi-orthogonal polynomials" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }