{ "id": "2108.06814", "version": "v1", "published": "2021-08-15T20:55:19.000Z", "updated": "2021-08-15T20:55:19.000Z", "title": "$C^1$ actions on the circle of finite index subgroups of $Mod(Σ_g)$, $Aut(F_n)$, and $Out(F_n)$", "authors": [ "Kamlesh Parwani" ], "comment": "11 pages", "categories": [ "math.GT", "math.DS" ], "abstract": "Let $\\Sigma_{g}$ be a closed, connected, and oriented surface of genus $g \\geq 24$ and let $\\Gamma$ be a finite index subgroup of the mapping class group $Mod(\\Sigma_{g})$ that contains the Torelli group $\\mathcal{I}(\\Sigma_g)$. Then any orientation preserving $C^1$ action of $\\Gamma$ on the circle cannot be faithful. We also show that if $\\Gamma$ is a finite index subgroup of $Aut(F_n)$, when $n \\geq 8$, that contains the subgroup of IA-automorphisms, then any orientation preserving $C^1$ action of $\\Gamma$ on the circle cannot be faithful. Similarly, if $\\Gamma$ is a finite index subgroup of $Out(F_n)$, when $n \\geq 8$, that contains the Torelli group $\\mathcal{T}_n$, then any orientation preserving $C^1$ action of $\\Gamma$ on the circle cannot be faithful.", "revisions": [ { "version": "v1", "updated": "2021-08-15T20:55:19.000Z" } ], "analyses": { "subjects": [ "37E10", "37C05", "20F65" ], "keywords": [ "finite index subgroup", "torelli group", "orientation preserving", "mapping class group", "ia-automorphisms" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }