{ "id": "2108.05235", "version": "v1", "published": "2021-08-11T14:08:22.000Z", "updated": "2021-08-11T14:08:22.000Z", "title": "Geometric quadratic Chabauty over number fields", "authors": [ "Pavel Čoupek", "David T. -B. G. Lilienfeldt", "Zijian Yao", "Luciena Xiao Xiao" ], "comment": "30 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "This article generalizes the geometric quadratic Chabauty method, initiated over $\\mathbb{Q}$ by Edixhoven and Lido, to curves defined over arbitrary number fields. The main result is a conditional bound on the number of rational points on curves that satisfy an additional Chabauty type condition on the Mordell-Weil rank of the Jacobian. The method gives a more direct approach to the generalization by Dogra of the quadratic Chabauty method to arbitrary number fields.", "revisions": [ { "version": "v1", "updated": "2021-08-11T14:08:22.000Z" } ], "analyses": { "subjects": [ "11G30", "11D45", "14G05" ], "keywords": [ "arbitrary number fields", "geometric quadratic chabauty method", "additional chabauty type condition", "direct approach", "conditional bound" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }