{ "id": "2108.04383", "version": "v1", "published": "2021-08-09T23:28:31.000Z", "updated": "2021-08-09T23:28:31.000Z", "title": "Unbounded multipliers of complete Pick spaces", "authors": [ "Michael T. Jury", "Robert T. W. Martin" ], "categories": [ "math.FA" ], "abstract": "We examine densely defined (but possibly unbounded) multiplication operators in Hilbert function spaces possessing a complete Nevanlinna-Pick (CNP) kernel. For such a densely defined operator $T$, the domains of $T$ and $T^*$ are reproducing kernel Hilbert spaces contractively contained in the ambient space. We study several aspects of these spaces, especially the domain of $T^*$, which can be viewed as analogs of the classical deBranges-Rovnyak spaces in the unit disk.", "revisions": [ { "version": "v1", "updated": "2021-08-09T23:28:31.000Z" } ], "analyses": { "subjects": [ "46E22", "47B32" ], "keywords": [ "complete pick spaces", "unbounded multipliers", "reproducing kernel hilbert spaces", "ambient space", "complete nevanlinna-pick" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }