{ "id": "2108.02844", "version": "v1", "published": "2021-08-05T20:52:48.000Z", "updated": "2021-08-05T20:52:48.000Z", "title": "A Moser/Bernstein type theorem in a Lie group with a left invariant metric under a gradient decay condition", "authors": [ "Ari Aiolfi", "Leonardo Bonorino", "Jaime Ripoll", "Marc Soret", "Marina Ville" ], "categories": [ "math.DG" ], "abstract": "We say that a PDE in a Riemannian manifold $M$ is geometric if,$\\ $whenever $u$ is a solution of the PDE on a domain $\\Omega$ of $M$, the composition $u_{\\phi}:=u\\circ\\phi$ is also solution on $\\phi^{-1}\\left( \\Omega\\right) $, for any isometry $\\phi$ of $M.$ We prove that if $u\\in C^{1}\\left( \\mathbb{H}^{n}\\right) $ is a solution of a geometric PDE satisfying the comparison principle, where $\\mathbb{H}^{n}$ is the hyperbolic space of constant sectional curvature $-1,$ $n\\geq2,$ and if \\[ \\limsup_{R\\rightarrow\\infty}\\left( e^{R}\\sup_{S_{R}}\\left\\Vert \\nabla u\\right\\Vert \\right) =0, \\] where $S_{R}$ is a geodesic sphere of $\\mathbb{H}^{n}$ centered at fixed point $o\\in\\mathbb{H}^{n}$ with radius $R,$ then $u$ is constant. Moreover, given $C>0,$ there is a bounded non-constant harmonic function $v\\in C^{\\infty }\\left( \\mathbb{H}^{n}\\right) $ such that \\[ \\lim_{R\\rightarrow\\infty}\\left( e^{R}\\sup_{S_{R}}\\left\\Vert \\nabla v\\right\\Vert \\right) =C. \\] The first part of the above result is a consequence of a more general theorem proved in the paper which asserts that if $G$ is a non compact Lie group with a left invariant metric, $u\\in C^{1}\\left( G\\right) $ a solution of a left invariant PDE (that is, if $v$ is a solution of the PDE on a domain $\\Omega$ of $G$, the composition $v_{g}:=v\\circ L_{g}$ of $v$ with a left translation $L_{g}:G\\rightarrow G,$ $L_{g}\\left( h\\right) =gh,$ is also solution on $L_{g}^{-1}\\left( \\Omega\\right) $ for any $g\\in G),$ the PDE satisfies the comparison principle and% \\[ \\limsup_{R\\rightarrow\\infty}\\left( \\sup_{g\\in B_{R}}\\left\\Vert \\operatorname*{Ad}\\nolimits_{g}\\right\\Vert \\sup_{S_{R}}\\left\\Vert \\nabla u\\right\\Vert \\right) =0, \\] where $\\operatorname*{Ad}\\nolimits_{g}:\\mathfrak{g}\\rightarrow\\mathfrak{g}$ is the adjoint map of $G$ and $\\mathfrak{g}$ the Lie algebra of $G,$ then $u$ is constant.", "revisions": [ { "version": "v1", "updated": "2021-08-05T20:52:48.000Z" } ], "analyses": { "subjects": [ "53C42", "35B08" ], "keywords": [ "left invariant metric", "moser/bernstein type theorem", "gradient decay condition", "comparison principle", "non compact lie group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }