{ "id": "2108.02454", "version": "v1", "published": "2021-08-05T08:40:21.000Z", "updated": "2021-08-05T08:40:21.000Z", "title": "On Cartwright-Littlewood Fixed Point Theorem", "authors": [ "Przemysław Kucharski" ], "categories": [ "math.DS" ], "abstract": "We prove the following generalization of the Cartwright-Littlewood fixed point theorem. Suppose $ h\\colon~{\\mathbb R}^{2}\\to{\\mathbb R}^{2} $ is an orientation preserving planar homeomorphism, and $ X $ is an acyclic continuum. Let $ C $ be a component of $ X \\cap h(X) $. If there is a $ c \\in C $ such that $ {\\mathcal O}_{+} (c) \\subseteq C $ or $ {\\mathcal O}_{-} (c) \\subseteq C $ then $ C $ also contains a fixed point of $ h$. Our result also generalizes earlier results of Ostrovski and Boro\\'nski, and answers the Question from Boro\\'nski's work in 2017. The proof is inspired by a short proof of the result of Cartwright and Littlewood due to Hamilton.", "revisions": [ { "version": "v1", "updated": "2021-08-05T08:40:21.000Z" } ], "analyses": { "keywords": [ "cartwright-littlewood fixed point theorem", "orientation preserving planar homeomorphism", "generalizes earlier results", "acyclic continuum", "short proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }