{ "id": "2108.01506", "version": "v1", "published": "2021-08-03T13:47:54.000Z", "updated": "2021-08-03T13:47:54.000Z", "title": "Moduli spaces of quasitrivial sheaves on the three dimensional projective space", "authors": [ "Douglas GuimarĂ£es", "Marcos Jardim" ], "categories": [ "math.AG" ], "abstract": "A torsion free sheaf $E$ on $\\mathbb{P}^d$ is called \\emph{quasitrivial} if $E^{\\vee\\vee}=\\mathcal{O}_{\\mathbb{P}^3}^{\\oplus r}$ and $\\dim(E^{\\vee\\vee}/E)=0$. While such sheaves are always $\\mu$-semistable, they may not be semistable. We study the Gieseker--Maruyama moduli space $\\mathcal{N}(r,n)$ of rank $r$ semistable quasitrivial sheaves on $\\mathbb{P}^3$ with $h^0(E^{\\vee\\vee}/E)=n$ via the Quot scheme of points $Quot(\\mathcal{O}_{\\mathbb{P}^3}^{\\oplus r},n)$. We show that $\\mathcal{N}(r,n)$ is empty when $r>n$, while $\\mathcal{N}(n,n)$ has no stable points and is isomorphic to the symmetric product $Sym^n(\\mathbb{P}^3)$. Our main result is the construction of an irreducible component of $\\mathcal{N}(r,n)$ of dimension $2n+rn-r^2+1$ when $r