{ "id": "2108.01476", "version": "v1", "published": "2021-08-03T13:04:14.000Z", "updated": "2021-08-03T13:04:14.000Z", "title": "Anisotropic curvature measures and uniqueness of convex bodies", "authors": [ "Mario Santilli" ], "categories": [ "math.MG", "math.DG" ], "abstract": "We prove that an arbitrary convex body $C \\subseteq \\mathbf{R}^{n+1} $, whose $ k $-th anisotropic curvature measure (for $ k =0, \\ldots , n-1 $) is a multiple constant of the anisotropic perimeter of C, must be a rescaled and translated Wulff shape.This result provides a generalization of a theorem of Schneider (1979) and resolves a conjecture of Andrews and Wei (2017).", "revisions": [ { "version": "v1", "updated": "2021-08-03T13:04:14.000Z" } ], "analyses": { "subjects": [ "52A20", "52A39", "53E10" ], "keywords": [ "uniqueness", "th anisotropic curvature measure", "arbitrary convex body", "multiple constant", "anisotropic perimeter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }