{ "id": "2108.00711", "version": "v1", "published": "2021-08-02T08:28:35.000Z", "updated": "2021-08-02T08:28:35.000Z", "title": "Existence of ground state solutions to some Nonlinear Schrödinger equations on lattice graphs", "authors": [ "Bobo Hua", "Wendi Xu" ], "comment": "19 pages", "categories": [ "math.AP", "math-ph", "math.CO", "math.MP" ], "abstract": "In this paper, we study the nonlinear Schr\\\"{o}dinger equation $ -\\Delta u+V(x)u=f(x,u) $on the lattice graph $ \\mathbb{Z}^{N}$. Using the Nehari method, we prove that when $f$ satisfies some growth conditions and the potential function $V$ is periodic or bounded, the above equation admits a ground state solution. Moreover, we extend our results from $\\mathbb{Z}^{N}$ to quasi-transitive graphs.", "revisions": [ { "version": "v1", "updated": "2021-08-02T08:28:35.000Z" } ], "analyses": { "subjects": [ "35Q55", "39A14", "58E30" ], "keywords": [ "ground state solution", "nonlinear schrödinger equations", "lattice graph", "growth conditions", "potential function" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }