{ "id": "2107.14184", "version": "v1", "published": "2021-07-29T17:11:13.000Z", "updated": "2021-07-29T17:11:13.000Z", "title": "Wasserstein Conditional Independence Testing", "authors": [ "Andrew Warren" ], "comment": "32 pages", "categories": [ "math.ST", "math.OC", "stat.TH" ], "abstract": "We introduce a test for the conditional independence of random variables $X$ and $Y$ given a random variable $Z$, specifically by sampling from the joint distribution $(X,Y,Z)$, binning the support of the distribution of $Z$, and conducting multiple $p$-Wasserstein two-sample tests. Under a $p$-Wasserstein Lipschitz assumption on the conditional distributions $\\mathcal{L}_{X|Z}$, $\\mathcal{L}_{Y|Z}$, and $\\mathcal{L}_{(X,Y)|Z}$, we show that it is possible to control the Type I and Type II error of this test, and give examples of explicit finite-sample error bounds in the case where the distribution of $Z$ has compact support.", "revisions": [ { "version": "v1", "updated": "2021-07-29T17:11:13.000Z" } ], "analyses": { "subjects": [ "62G10", "49Q22" ], "keywords": [ "wasserstein conditional independence testing", "explicit finite-sample error bounds", "wasserstein two-sample tests", "wasserstein lipschitz assumption", "random variable" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }