{ "id": "2107.13636", "version": "v1", "published": "2021-07-28T20:48:50.000Z", "updated": "2021-07-28T20:48:50.000Z", "title": "A note on the mean values of the derivatives of $ζ'/ζ$", "authors": [ "Andrés Chirre" ], "categories": [ "math.NT" ], "abstract": "Assuming the Riemann hypothesis, we obtain a formula for the mean value of the $k$-derivative of $\\zeta'/\\zeta$, depending on the pair correlation of zeros of the Riemann zeta-function. This formula allows us to obtain new equivalences to Montgomery's pair correlation conjecture. This extends a result of Goldston, Gonek, and Montgomery where the mean value of $\\zeta'/\\zeta$ was considered.", "revisions": [ { "version": "v1", "updated": "2021-07-28T20:48:50.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26" ], "keywords": [ "mean value", "montgomerys pair correlation conjecture", "derivative", "riemann hypothesis", "riemann zeta-function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }