{ "id": "2107.12121", "version": "v1", "published": "2021-07-26T11:38:18.000Z", "updated": "2021-07-26T11:38:18.000Z", "title": "On some symmetries of the base $ n $ expansion of $ 1/m $ : Comments on Artin's Primitive root conjecture", "authors": [ "Kalyan Chakraborty", "Krishnarjun Krishnamoorthy" ], "comment": "Eight pages", "categories": [ "math.NT" ], "abstract": "Suppose $ m,n\\geq 2 $ are co prime integers. We prove certain new symmetries of the base $ n $ representation of $ 1/m $, and in particular characterize the subgroup generated by $ n $ inside $ (\\mathbb{Z}/m\\mathbb{Z})^\\times $. As an application we give a sufficient condition for a prime $ p $ such that a non square number $ n $ is a primitive root modulo $ p $.", "revisions": [ { "version": "v1", "updated": "2021-07-26T11:38:18.000Z" } ], "analyses": { "subjects": [ "11A07" ], "keywords": [ "artins primitive root conjecture", "symmetries", "non square number", "prime integers", "primitive root modulo" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }