{ "id": "2107.12105", "version": "v1", "published": "2021-07-26T10:52:47.000Z", "updated": "2021-07-26T10:52:47.000Z", "title": "On the semisimplicity of the category $KL_k$ for affine Lie superalgebras", "authors": [ "Drazen Adamovic", "Pierluigi Moseneder Frajria", "Paolo Papi" ], "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "We study the semisimplicity of the category $KL_k$ for affine Lie superalgebras and provide a super analog of certain results from arXiv:1801.09880. Let $KL_k^{fin}$ be the subcategory of $KL_k$ consisting of ordinary modules on which the Cartan subalgebra acts semisimply. We prove that $KL_k^{fin}$ is semisimple when 1) $k$ is a collapsing level, 2) $W_k(\\mathfrak{g}, \\theta)$ is rational, 3) $W_k(\\mathfrak{g}, \\theta)$ is semisimple in a certain category. The analysis of the semisimplicity of $KL_k$ is subtler than in the Lie algebra case, since in super case $KL_k$ can contain indecomposable modules. We are able to prove that in many cases when $KL_k^{fin}$ is semisimple we indeed have $KL_k^{fin}=KL_k$, which therefore excludes indecomposable and logarithmic modules in $KL_k$. In these cases we are able to prove that there is a conformal embedding $W \\hookrightarrow V_k(\\mathfrak{g})$ with $W$ semisimple (see Section 10). In particular, we prove the semisimplicity of $KL_k$ for $\\mathfrak{g}=sl(2\\vert 1)$ and $k = -\\frac{m+1}{m+2}$, $m \\in {\\mathbb Z}_{\\ge 0}$. For $\\mathfrak{g} =sl(m \\vert 1)$, we prove that $KL_k$ is semisimple for $k=-1$, but for $k=1$ we show that it is not semisimple by constructing indecomposable highest weight modules in $KL_k^{fin}$.", "revisions": [ { "version": "v1", "updated": "2021-07-26T10:52:47.000Z" } ], "analyses": { "keywords": [ "affine lie superalgebras", "semisimplicity", "semisimple", "cartan subalgebra acts", "lie algebra case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }