{ "id": "2107.11974", "version": "v1", "published": "2021-07-26T06:02:16.000Z", "updated": "2021-07-26T06:02:16.000Z", "title": "For which functions are $f(X_t)-\\mathbb{E} f(X_t)$ and $g(X_t)/\\,\\mathbb{E} g(X_t)$ martingales?", "authors": [ "Franziska Kühn", "René L. Schilling" ], "categories": [ "math.PR" ], "abstract": "Let $X=(X_t)_{t\\geq 0}$ be a one-dimensional L\\'evy process such that each $X_t$ has a $C^1_b$-density w.r.t. Lebesgue measure and certain polynomial or exponential moments. We characterize all polynomially bounded functions $f:\\mathbb{R}\\to\\mathbb{R}$, and exponentially bounded functions $g:\\mathbb{R}\\to (0,\\infty)$, such that $f(X_t)-\\mathbb{E} f(X_t)$, resp. $g(X_t)/\\mathbb{E} g(X_t)$, are martingales.", "revisions": [ { "version": "v1", "updated": "2021-07-26T06:02:16.000Z" } ], "analyses": { "subjects": [ "60G44", "60G51", "60J65", "39B22", "45E10" ], "keywords": [ "martingales", "one-dimensional levy process", "lebesgue measure", "exponential moments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }