{ "id": "2107.11715", "version": "v1", "published": "2021-07-25T03:04:17.000Z", "updated": "2021-07-25T03:04:17.000Z", "title": "A symmetric chain decomposition of $N(m,n)$ of composition", "authors": [ "Yueming Zhong" ], "comment": "10 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains. For positive integers $m$ and $n$, let $N(m,n)$ denote the set of all compositions $\\alpha=(\\alpha_1,\\cdots,\\alpha_m)$, with $0\\le \\alpha_i \\le n$ for each $i=1,\\cdots,m$. Define order $<$ as follow, $\\forall \\alpha,\\beta \\in N(m,n)$, $\\beta < \\alpha$ if and only if $\\beta_i \\le \\alpha_i(i=1,\\cdots,m)$ and $\\sum\\limits_{i=1}^{m}\\beta_i <\\sum\\limits_{i=1}^{m}\\alpha_i$. In this paper, we show that the poset $(N(m,n),<)$ can be expressed as a disjoint of symmetric chains by constructive method.", "revisions": [ { "version": "v1", "updated": "2021-07-25T03:04:17.000Z" } ], "analyses": { "subjects": [ "05A19", "05E99" ], "keywords": [ "symmetric chain decomposition", "disjoint union", "define order", "positive integers", "constructive method" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }