{ "id": "2107.10595", "version": "v1", "published": "2021-07-22T11:47:29.000Z", "updated": "2021-07-22T11:47:29.000Z", "title": "Two inequalities for the first Robin eigenvalue of the Finsler Laplacian", "authors": [ "Giuseppina Di Blasio", "Nunzia Gavitone" ], "comment": "7 pages", "categories": [ "math.AP" ], "abstract": "Let \\Omega be a bounded connected, open set of \\R^n with Lipschitz boundary. Let F be a suitable norm in \\R^n and let \\Delta_F u be the so-colled Finsler Laplacian. In this paper we prove two inequalities for the first eigenvalue of \\Delta_F with Robin boundary conditions involving a positive function \\beta. As a consequence of our result we obtain the asymptotic behavior of this eigenvalue when \\beta is a positive constant which goes to zero.", "revisions": [ { "version": "v1", "updated": "2021-07-22T11:47:29.000Z" } ], "analyses": { "subjects": [ "35P15", "35B40" ], "keywords": [ "first robin eigenvalue", "inequalities", "robin boundary conditions", "asymptotic behavior", "so-colled finsler laplacian" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }