{ "id": "2107.10442", "version": "v1", "published": "2021-07-22T03:40:44.000Z", "updated": "2021-07-22T03:40:44.000Z", "title": "The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces", "authors": [ "Yingying Guo" ], "categories": [ "math.AP" ], "abstract": "In this paper, we first establish the local well-posedness (existence, uniqueness and continuous dependence) for the Fornberg-Whitham equation in both supercritical Besov spaces $B^s_{p,r},\\ s>1+\\frac{1}{p},\\ 1\\leq p,r\\leq+\\infty$ and critical Besov spaces $B^{1+\\frac{1}{p}}_{p,1},\\ 1\\leq p<+\\infty$, which improves the previous work \\cite{y2,ho,ht}. Then, we prove the solution is not uniformly continuous dependence on the initial data in supercritical Besov spaces $B^s_{p,r},\\ s>1+\\frac{1}{p},\\ 1\\leq p\\leq+\\infty,\\ 1\\leq r<+\\infty$ and critical Besov spaces $B^{1+\\frac{1}{p}}_{p,1},\\ 1\\leq p<+\\infty$. At last, we show that the solution is ill-posed in $B^{\\sigma}_{p,\\infty}$ with $\\sigma>3+\\frac{1}{p},\\ 1\\leq p\\leq+\\infty$.", "revisions": [ { "version": "v1", "updated": "2021-07-22T03:40:44.000Z" } ], "analyses": { "keywords": [ "initial data", "fornberg-whitham equation", "non-uniform dependence", "supercritical besov spaces", "ill-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }