{ "id": "2107.10205", "version": "v1", "published": "2021-07-21T16:54:36.000Z", "updated": "2021-07-21T16:54:36.000Z", "title": "Quantum immanants, double Young-Capelli bitableaux and Schur shifted symmetric functions", "authors": [ "Andrea Brini", "Antonio Teolis" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1608.06780", "categories": [ "math.RT", "math.CO" ], "abstract": "In this paper are introduced two classes of elements in the enveloping algebra $\\mathbf{U}(gl(n))$: the \\emph{double Young-Capelli bitableaux} $[\\ \\fbox{$S \\ | \\ T$}\\ ]$ and the \\emph{central} \\emph{Schur elements} $\\mathbf{S}_{\\lambda}(n)$, that act in a remarkable way on the highest weight vectors of irreducible Schur modules. Any element $\\mathbf{S}_{\\lambda}(n)$ is the sum of all double Young-Capelli bitableaux $[\\ \\fbox{$S \\ | \\ S$}\\ ]$, $S$ row (strictly) increasing Young tableaux of shape $\\widetilde{\\lambda}$. The Schur elements $\\mathbf{S}_\\lambda(n)$ are proved to be the preimages - with respect to the Harish-Chandra isomorphism - of the \\emph{shifted Schur polynomials} $s_{\\lambda|n}^* \\in \\Lambda^*(n)$. Hence, the Schur elements are the same as the Okounkov \\textit{quantum immanants}, recently described by the present authors as linear combinations of \\emph{Capelli immanants}. This new presentation of Schur elements/quantum immanants doesn't involve the irreducible characters of symmetric groups. The Capelli elements $\\mathbf{H}_k(n)$ are column Schur elements and the Nazarov-Umeda elements $\\mathbf{I}_k(n)$ are row Schur elements. The duality in $\\boldsymbol{\\zeta}(n)$ follows from a combinatorial description of the eigenvalues of the $\\mathbf{H}_k(n)$ on irreducible modules that is {\\it{dual}} (in the sense of shapes/partitions) to the combinatorial description of the eigenvalues of the $\\mathbf{I}_k(n)$. The passage $n \\rightarrow \\infty$ for the algebras $\\boldsymbol{\\zeta}(n)$ is obtained both as direct and inverse limit in the category of filtered algebras, via the \\emph{Olshanski decomposition/projection}.", "revisions": [ { "version": "v1", "updated": "2021-07-21T16:54:36.000Z" } ], "analyses": { "subjects": [ "17B10", "05E05", "05E15", "17B35" ], "keywords": [ "schur shifted symmetric functions", "double young-capelli bitableaux", "combinatorial description", "schur elements/quantum immanants", "highest weight vectors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }