{ "id": "2107.08308", "version": "v1", "published": "2021-07-17T19:48:08.000Z", "updated": "2021-07-17T19:48:08.000Z", "title": "Reciprocity Relations for Summations of Squares of Floor Functions and Fractional Parts of Fractions", "authors": [ "Damanvir Singh Binner" ], "categories": [ "math.NT" ], "abstract": "Given positive coprime integers $a$ and $b$ and a natural number $h$, we obtain reciprocity relations which can be used to quickly evaluate summations like $\\sum_{i=1}^{h} \\{\\frac{ib}{a}\\}^2$ and $\\sum_{i=1}^{h} \\lfloor \\frac{ib}{a} \\rfloor^2$, where $\\lfloor x \\rfloor$ and $\\{x\\}$ denote the floor function and the fractional part of $x$, respectively.", "revisions": [ { "version": "v1", "updated": "2021-07-17T19:48:08.000Z" } ], "analyses": { "keywords": [ "fractional part", "floor function", "reciprocity relations", "quickly evaluate summations", "positive coprime integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }