{ "id": "2107.07262", "version": "v1", "published": "2021-07-15T11:38:29.000Z", "updated": "2021-07-15T11:38:29.000Z", "title": "Quadratic rational maps with integer multipliers", "authors": [ "Valentin Huguin" ], "comment": "17 pages, 4 figures, 6 tables", "categories": [ "math.DS", "math.NT" ], "abstract": "In this article, we prove that every quadratic rational map whose multipliers all lie in the ring of integers of a given imaginary quadratic field is a power map, a Chebyshev map or a Latt\\`{e}s map. In particular, this provides some evidence in support of a conjecture by Milnor concerning rational maps whose multipliers are all integers.", "revisions": [ { "version": "v1", "updated": "2021-07-15T11:38:29.000Z" } ], "analyses": { "subjects": [ "37P05", "37P35", "37F10", "37F44" ], "keywords": [ "quadratic rational map", "integer multipliers", "imaginary quadratic field", "milnor concerning rational maps", "chebyshev map" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }