{ "id": "2107.05788", "version": "v1", "published": "2021-07-13T00:14:22.000Z", "updated": "2021-07-13T00:14:22.000Z", "title": "Integer decomposition property of polytopes", "authors": [ "Sharon Robins" ], "comment": "15 pages, 8 figures", "categories": [ "math.CO", "math.AG" ], "abstract": "We study the integer decomposition property of lattice polytopes associated with the $n$-dimensional smooth complete fans with at most $n+3$ rays. Using the classification of smooth complete fans by Kleinschmidt and Batyrev and a reduction to lower dimensional polytopes we prove the integer decomposition property for lattice polytopes in this setting.", "revisions": [ { "version": "v1", "updated": "2021-07-13T00:14:22.000Z" } ], "analyses": { "subjects": [ "52B20", "14M25" ], "keywords": [ "integer decomposition property", "dimensional smooth complete fans", "lattice polytopes", "lower dimensional polytopes", "classification" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }