{ "id": "2107.04514", "version": "v1", "published": "2021-07-09T16:00:51.000Z", "updated": "2021-07-09T16:00:51.000Z", "title": "Global Lipschitz stability for an inverse source problem for the Navier-Stokes equations", "authors": [ "O. Y. Imanuvilov", "M. Yamamoto" ], "categories": [ "math.AP" ], "abstract": "For linearized Navier-Stokes equations, we consider an inverse source problem of determining a spatially varying divergence-free factor. We prove the global Lipschitz stability by interior data over a time interval and velocity field at $t_0>0$ over the spatial domain. The key are Carleman estimates for the Navier-Stokes equations and the operator rot.", "revisions": [ { "version": "v1", "updated": "2021-07-09T16:00:51.000Z" } ], "analyses": { "subjects": [ "35R30", "35R25", "35Q30" ], "keywords": [ "inverse source problem", "global lipschitz stability", "spatially varying divergence-free factor", "linearized navier-stokes equations", "interior data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }