{ "id": "2107.04495", "version": "v1", "published": "2021-07-09T15:37:23.000Z", "updated": "2021-07-09T15:37:23.000Z", "title": "Carleman estimate for the Navier-Stokes equations and applications", "authors": [ "Oleg Y. Imanuvilov", "Luca Lorenzi", "M. Yamamoto" ], "categories": [ "math.AP" ], "abstract": "For linearized Navier-Stokes equations, we first derive a Carleman estimate with a regular weight function. Then we apply it to establish conditional stability for the lateral Cauchy problem and finally we prove conditional stability estimates for inverse source problem of determining a spatially varying divergence-free factor of a source term.", "revisions": [ { "version": "v1", "updated": "2021-07-09T15:37:23.000Z" } ], "analyses": { "subjects": [ "35R30", "35R25", "35Q30" ], "keywords": [ "carleman estimate", "applications", "regular weight function", "lateral cauchy problem", "conditional stability estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }