{ "id": "2107.04471", "version": "v1", "published": "2021-07-09T14:58:30.000Z", "updated": "2021-07-09T14:58:30.000Z", "title": "Integrability of orthogonal projections, and applications to Furstenberg sets", "authors": [ "Damian DÄ…browski", "Tuomas Orponen", "Michele Villa" ], "comment": "25 pages, 3 figures", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "Let $\\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\\mathbb{R}^{d}$, and let $\\pi_{V} \\colon \\mathbb{R}^{d} \\to V$ be the orthogonal projection. We prove that if $\\mu$ is a compactly supported Radon measure on $\\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\\mu(B(x,r)) \\leq Cr^{s}$ for all $x \\in \\mathbb{R}^{d}$ and $r > 0$, then $$\\int_{\\mathcal{G}(d,n)} \\|\\pi_{V}\\mu\\|_{L^{p}(V)}^{p} \\, d\\gamma_{d,n}(V) < \\infty, \\qquad 1 \\leq p < \\frac{2d - n - s}{d - s}.$$ The upper bound for $p$ is sharp, at least, for $d - 1 \\leq s \\leq d$, and every $0 < n < d$. Our motivation for this question comes from finding improved lower bounds on the Hausdorff dimension of $(s,t)$-Furstenberg sets. For $0 \\leq s \\leq 1$ and $0 \\leq t \\leq 2$, a set $K \\subset \\mathbb{R}^{2}$ is called an $(s,t)$-Furstenberg set if there exists a $t$-dimensional family $\\mathcal{L}$ of affine lines in $\\mathbb{R}^{2}$ such that $\\dim_{\\mathrm{H}} (K \\cap \\ell) \\geq s$ for all $\\ell \\in \\mathcal{L}$. As a consequence of our projection theorem in $\\mathbb{R}^{2}$, we show that every $(s,t)$-Furstenberg set $K \\subset \\mathbb{R}^{2}$ with $1 < t \\leq 2$ satisfies $$\\dim_{\\mathrm{H}} K \\geq 2s + (1 - s)(t - 1).$$ This improves on previous bounds for pairs $(s,t)$ with $s > \\tfrac{1}{2}$ and $t \\geq 1 + \\epsilon$ for a small absolute constant $\\epsilon > 0$. We also prove an analogue of this estimate for $(d - 1,s,t)$-Furstenberg sets in $\\mathbb{R}^{d}$.", "revisions": [ { "version": "v1", "updated": "2021-07-09T14:58:30.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78", "44A12" ], "keywords": [ "furstenberg set", "orthogonal projection", "applications", "integrability", "dimensional frostman condition" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }